Jian-Qing Qi

Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Tel: (+86)18721223551, Email: qjq18@tsinghua.org.cn

Website: https://www.jiaolei.group/author/jian-qing-qi/

RESEARCH INTERESTS	
Physical Organic Chemistry, Photochemistry, Radical Chemistry.	
EDUCATION	
Tsinghua University, Department of Chemistry	Aug. 2022 - Now
PhD Student	
• Adviser: Lei Jiao	
Tsinghua University, Department of Chemistry	Sept. 2018 - July. 2022
Bachelor of Science (Graduate with Honors)	
RECENT RESEARCH	
Direct Observation of All Open-Shell Intermediates in a Photocatalytic Cycle	March 2024
J. Am. Chem. Soc. 2024 , 146 (11), 7140–7145.	
Advisor: Prof. Lei Jiao and Prof. Xingwei Guo	
• Successfully achieved direct observation of all radical intermediates in a photocatalytic cycle, clearly	
characterizing their interconversion processes.	
• Marking the first-time chemists can clearly observe all radical intermediates and their transformation	
processes in a complex reaction	
Providing a new perspective for understanding photocatalytic reaction mechanism	ns.
Overestimated Halogen Atom Transfer Reactivity of α-Aminoalkyl Radicals	August 2024
J. Am. Chem. Soc. 2024, 146 (37), 25860–25869.	
Advisor: Prof. Lei Jiao and Prof. Xingwei Guo.	
• In-depth study of the reactivity of amine alkyl radicals in halogen atom transfer reactions, and established	
a systematic reactivity scale	
• Challenges the conventional understanding of amine alkyl radical reactivity and demonstrates the	
tremendous potential of U-PSD TREPR in unveiling radical kinetics.	
Characterization and Monitoring of Transient Enamine Radical	April 2024
CCS Chemistry 2024 , 6 (10), 2420–2426.	
Advisor: Prof. Lei Jiao, Prof. Xingwei Guo and Prof. Sanzhong Luo.	
• Successfully observed enamine radical intermediates, crucial in organocatalysis, for the first time.	
• Revealed the structure-activity relationship of enamine radical intermediates in radical addition reactions	
and measured the pKa values of these transient radical intermediates.	
HONORS & AWARDS	
• April 2024. Outstanding Presenter Award at 5th Beijing-Tianjin Organic Chemistry Graduate Student	
Academic Seminar.	
• August 2024. Selected Oral at the Excellent Doctoral Student Forum of the National High-Level Talent	
Training Center for Chemistry.	

SELECTED PUBLICATION

- (1) Suo, W. *; Qi, J.-Q. *; Liu, J.; Sun, S.; Jiao, L.*; Guo, X.* Overestimated Halogen Atom Transfer Reactivity of a-Aminoalkyl Radicals. J. Am. Chem. Soc. 2024, 146 (37), 25860–25869.
- (2) **Qi, J.-Q.**[#]; Suo, W.[#]; Liu, J.; Sun, S.; Jiao, L.*; Guo, X.* Direct Observation of All Open-Shell Intermediates in a Photocatalytic Cycle. *J. Am. Chem. Soc.* **2024**, *146* (11), *7*140–7145.
- (3) Zhang, S. *; Cheng, L. *; Qi, J.-Q. *; Jia, Z.; Zhang, L.; Jiao, L.*; Guo, X.*; Luo, S.* Characterization and Monitoring of Transient Enamine Radical Intermediates in Photoredox/Chiral Primary Amine Synergistic Catalytic Cycle. CCS Chemistry 2024, 6 (10), 2420–2426.
- (4) Zhang, S.; Zhou, S.; **Qi, J.**; Jiao, L.; Guo, X. Time-Resolved Electron Paramagnetic Resonance Spectrometer Based on Ultrawide Single-Sideband Phase-Sensitive Detection. *Rev. Sci. Instrum.* **2023**, *94* (8), 084101.
- (5) Qi, J.-Q.; Jiao, L. DFT Study on the Mechanism of 4,4'-Bipyridine-Catalyzed Nitrobenzene Reduction by Diboron(4) Compounds. J. Org. Chem. 2020, 85 (21), 13877–13885.